ЗАДАТЬ ВОПРОС

Формула n-го члена арифметической прогрессии

        Суперполезная формула! Позволяет легко и просто (и главное – быстро!) искать любой член арифметической прогрессии! Да-да, любой! Какой хотите.) А заодно и массу других самых разных задач по прогрессии решать. Имеет смысл освоить и разобраться, правда?

        Вот поэтому осваиваем и разбираемся. В этом уроке.)

 

Вывод и смысл формулы n-го члена

 

        Итак, прошу любить и жаловать:

an = a1 + (n-1)·d

 

        Это и есть формула n-го члена арифметической прогрессии, собственной персоной.) Какие-то индексы, буковки непонятные. Ничего страшного! Сейчас всё расшифрую.

        В формуле:

        a1первый член арифметической прогрессии;

        dразность арифметической прогрессии;

        n – номер члена;

        anэнный (n-й) член арифметической прогрессии.

        Как вы видите, большая часть входящих в формулу буковок (первый член, разность прогрессии, номер члена) уже должна быть вам хорошо знакома из прошлого урока. Если не читали, настоятельно рекомендую заглянуть. Там всё просто и доступно. Осталось лишь разобраться, что же такое n-й член.

        Мы с вами знаем (надеюсь), что любую арифметическую прогрессию в общем виде всегда можно записать в виде последовательности чисел:

        a1, a2, a3, a4, a5, …

        Символ a1 означает первый член прогрессии, a2 – второй член, a5 – пятый и так далее. Если нас интересует, скажем, десятый член прогрессии, то работаем с a10. Если сто тридцатый, то, соответственно, с a130. Элементарно, Ватсон!)

        А как можно обозначить в общем виде любой член арифметической прогрессии прогрессии с любым номером? Тоже элементарно! Вот так:

        an

        Это и есть n-й член арифметической прогрессии. Под буковкой n здесь скрываются сразу все номера членов: и 1, и 23 и 101 – все без исключения!

        И что нам даёт такая запись? Казалось бы, всего лишь вместо цифры буковка появилась – и что из этого? А вот что.

        Запись эта представляет собой очень мощный инструмент для работы с арифметической прогрессией. Сомневаетесь? Не надо.) Используя обозначение an, мы можем легко и просто искать любой член любой арифметической прогрессии! Как? Читаем дальше.)

 

        Возвращаемся снова к нашей формуле:

an = a1 + (n-1)·d

       

        Со всеми обозначениями мы успешно разобрались, а теперь разбираемся, в чём же её суть.

        Эта формула позволяет нам найти любой член арифметической прогрессии по его номеру "n".

        Заманчиво, правда? Знаем номер члена – сразу же можем найти и сам этот член! Естественно, для этого нам надо знать ещё первый член a1 и разность прогрессии d. Ну так без этих двух ключевых параметров конкретную прогрессию и не задашь вовсе.

        Формула эта связывает четыре главных параметра любой арифметической прогрессии – аn, a1, d и n. Именно вокруг этих четырёх параметров и крутятся все-все задачки по прогрессии!

        Откуда же берётся эта формула и как её запомнить? А то уж больно часто сомнения грызут – то ли n там, то ли n-1, то ли n+1… Особенно на контрольных и экзаменах.

        Спокойствие! Сейчас мы с вами эту формулку выведем! Не очень строго, правда, но зато с полным пониманием всего происходящего. Что, как и откуда. И у вас сразу же отпадут все сомнения!

        Итак, рисуем числовую ось и последовательно отмечаем на ней члены нашей прогрессии:

        

        А теперь смотрим на рисунок и соображаем. Чему равен второй член прогрессии?

        Второй член равен первому члену плюс одно d:

        a2 = a1 + 1·d

        А третий член чему равен?

        Не вопрос! Третий член равен первому члену плюс два d:

        a3 = a1 + 2·d

        Ну как, улавливаете закономерность? Я же не просто так некоторые слова и цифры выделяю жирным шрифтом! Нет? Что ж, ладно. Ещё один шаг.)

        Чему равен четвёртый член?

        Четвёртый член равен первому члену плюс три d:

        a4 = a1 + 3·d

        Пора бы уже догадаться, что количество интервалов (т.е. d) всегда на единичку меньше, чем номер нужного нам члена n. Поэтому до номера n количество интервалов всегда будет n-1.

        Стало быть, наша формула, уже безо всяких сомнений, будет вот такой:

an = a1 + (n-1)·d

        Вот и весь секрет.)

        Совсем строгое доказательство данной формулы проводится так называемым методом математической индукции. Но метод этот – для особых гурманов.) Не каждый с ходу разберётся и поймёт, что к чему. А вот по картинке всё просто и наглядно! Да и вообще, картинка – очень мощный инструмент решения многих математических задач! И не только по прогрессиям. Так что не пренебрегаем ими. Скажем, в сложной боевой обстановке ЕГЭ вы переволновались и подзабыли случайно эту формулу. Ну, вот не помните, с кем не бывает! Ничего страшного. Есть пара-тройка минуток времени - рисуем картинку, отмечаем члены прогрессии и промежутки между членами – и всё сразу становится как на ладони!

        Разумеется, всё от конкретной задачи зависит. Бывают и такие задачи, рисовать картинку к которым весьма затруднительно, а то и вовсе невозможно. Тогда – только формула, да…) Ибо формула – это тяжёлая артиллерия, позволяющая подключить к решению задачи весь мощный арсенал математики – уравнения, неравенства, системы и т.д. Картинку ведь в уравнение не вставишь!

        Ну что, коли уж мы заговорили о задачках, то пора бы уже и порешать!

 

Решение задач с помощью формулы n-го члена арифметической прогрессии.

 

        Прямое применение формулы.

 

        Начнём с прямого применения формулы. В самом конце прошлого урока была вот такая задачка:

        В арифметической прогрессии известно, что a1 = 4 и d = 0,4. Найдите a141.

        Конечно, эту задачку можно и безо всяких формул решить. Исходя из смысла арифметической прогрессии. Прибавлять себе по 0,4 да считать. Часок-другой…)

        Зато по формуле решение осуществляется в одну строчку и занимает меньше минуты! Можете засекать время.)

        Итак, у нас имеются все данные для применения формулы.

        Известен первый член: a1 = 4.

        Известна также разность прогрессии: d = 0,4.

        Остаётся только сообразить, чему равен номер члена n. Не вопрос! Нам надо найти a141. Так прямо и пишем:

        a141 =

        А вот здесь сосредотачиваемся! Вместо индекса n у нас появилось конкретное число 141. Что вполне естественно. Ибо нас интересует член прогрессии номер сто сорок один. Вот именно это и будет наше n! Именно это значение n = 141 мы и подставим в формулу n-го члена в скобки.

        Подставляем все наши данные в формулу и считаем:

        a141 = 4 + (141-1)·0,4 = 4+56 = 60

        Вот и всё, никаких фокусов. Так же быстро можно найти и четыреста третий член, и тысяча первый – любой! Какой хотим, такой и отыщем. Просто подставляем нужный номер в формулу вместо индекса n и в скобки. И считаем.)

        Рассмотрим теперь задачку похитрее.

 

        В арифметической прогрессии с разностью 3 пятнадцатый член равен 50. Найдите первый член этой прогрессии.

        Ну и как вам? Знаете, с чего начинать? Если знаете – вперёд и с песнями. Не знаете? Что ж, тогда подскажу.

        Пишем формулу n-го члена арифметической прогрессии!

        Да-да! Прямо на черновике или в тетрадке.)

        an = a1 + (n-1)·d

        А теперь глядим внимательно на нашу формулу и соображаем, какие данные у нас уже есть, а чего не хватает.

        Во-первых, нам известна разность прогрессии d:

        d = 3

        Во-вторых, нам известен пятнадцатый член прогрессии. Так и пишем:

        a15 = 50

        Всё? Не-а! У нас есть ещё номер n! Дело в том, что в условии a15 = 50 скрыты сразу два параметра прогрессии. Это, во-первых, значение самого пятнадцатого члена (50) и, во-вторых, его номер (15). То есть, n=15.

        Вот теперь уже можно подставить все известные нам данные в формулу:

        50 = a1 + 3·(15-1)

        Решаем это простенькое линейное уравнение и получаем ответ:

        a1 = 8

        Вот и все дела.)

 

        Ещё одна популярная задачка:

        Найдите разность арифметической прогрессии (an), если

        a1 = 6; a21 = -14.

        Первый шаг тот же самый: пишем формулу n-го члена арифметической прогрессии!

        an = a1 + (n-1)·d

        А теперь снова соображаем, что нам дано по условию задачи:

        a1 = 6

        a21 = -14

        n = 21

        Вот и всё. Всю ценную информацию из условия скачали. Подставляем наши известные величины в формулу и считаем банальную арифметику:

        -14 = 6 + (21-1)·d

        -14 = 6 + 20d

        -20 = 20d

        d = -1

        Всё. Это правильный ответ.)

 

        Так, задачки на поиск an, a1 и d порешали. Осталось научиться ещё номер члена находить.)

        Известно, что число 43 является членом арифметической прогрессии (an) c первым членом, равным 3 и разностью 0,4. Найдите номер этого члена.

        Вы удивитесь, но первый шаг снова точно такой же.

        Пишем формулу!

        an = a1 + (n-1)·d

        На первый взгляд кажется, что здесь две неизвестные величины – an и n. Но an – это какой-то член арифметической прогрессии под номером n. И этот член нам известен! Это 43. Нам неизвестен номер n этого члена. Так этот самый номер, как раз, и требуется отыскать!

        Подставляем член прогрессии 43 в формулу n-го члена вместе с остальными известными нам параметрами:

        43 = 3 + (n-1)·0,4

        Считаем простецкую арифметику и выражаем номер n:

        (n-1)·0,4 = 40

        n-1 = 100

        n = 101

        Готово дело.)

        Как вы видите, запись формулы в общем виде и подстановка в неё известных величин – весьма популярный приём в решении очень многих задач на прогрессии! Если вы, конечно, умеете выражать переменную из формулы. Ну так без этого умения математику можно и вовсе не изучать. Как, впрочем, и остальные точные науки тоже, да…

        А теперь ещё одна задачка на эту тему, но более творческая.

 

        Определите, будет ли число 74 членом арифметической прогрессии

        (an): -5,6; -4; -2,4; …

        Снова (да-да!) пишем формулу:

        an = a1 + (n-1)·d

        Начинаем подставлять известные нам данные. Гм… не подставляется что-то…

        Что, не видите никаких данных? Серьёзно? Ну, тогда срочно к окулисту. Без обид.) Что же всё-таки можно увидеть из предложенной нам последовательности? Первый член видим? Видим! Это -5,6. А разность d? Пока не видим, но… её можно посчитать, да.) Если, конечно, вы в курсе, что такое разность арифметической прогрессии:

        d = -4 – (-5,6) = 1,6

        Ну вот, уже кое-что. Осталось лишь разобраться с неизвестным нам номером n и загадочным числом 74. В предыдущей задачке нам прямым текстом было указано, что дан именно член прогрессии. А здесь про число 74 ничего непонятно – член оно, не член… Что делать?

        Что-что… Включим смекалку! Мы предположим, что число 74 – это всё-таки член нашей прогрессии! С неизвестным номером n. И снова попробуем отыскать, найти этот номер! Смело подставляем в формулу все наши числа:

        74 = -5,6 + (n-1)·1,6

        И выражаем n:

        (n-1)·1,6 = 79,6

        n – 1 = 49,75

        n = 50,75

        Во как! Номер получился дробный! А дробных номеров в прогрессиях не бывает. Уравнению ведь без разницы, с какими числами работать – целыми, дробными, отрицательными. Уравнение со всякими работает.) Вот оно нам честно и ответило: "В этой арифметической прогрессии число 74 имеет номер 50,75!"

        И какой же вывод можно сделать из полученного результата? Да! Число 74 не является членом нашей прогрессии! Оно находится где-то между пятидесятым и пятьдесят первым членами. Вот, если бы наш номер получился натуральным, то тогда – да, число 74 было бы членом нашей прогрессии. С найденным номером n.

        А так, ответ задачи: нет.

 

        Более сложные задачи.

 

        Рассмотрим теперь более хитрые задачки на применение формулы n-го члена. Например, такую:

        Известно, что в арифметической прогрессии a3 = 2,1 и a6 = 6,3. Найдите a4.

        Эту задачку мы с вами уже решали в прошлом уроке. Для её успешного решения мы рисовали с вами вот такую незамысловатую картинку:

        

        Из этой картинки мы легко определили разность прогрессии d и затем так же легко, прямо по смыслу арифметической прогрессии, посчитали нужный нам четвёртый член.

        Получили ответ: a4 = 3,5.

        Вспомнили? Отлично!

        То был графический способ. А сейчас мы с вами решим эту же задачку, но другим способом! Аналитическим.) С помощью формулы n-го члена, да. Нам ведь с формулой размяться нужно, правда?) Вот и разминаемся.

        Итак, что нам дано в условии задачи? Нам даны два члена некоторой арифметической прогрессии. А именно – третий и шестой её члены.

        Вот и расписываем их по формуле n-го члена!

        Именно так! Просто берём формулу n-го члена арифметической прогрессии и поочерёдно подставляем в неё известные нам данные для каждого члена.

        Для третьего члена a3 = 2,1 получим:

        2,1 = a1 + (3-1)·d

        2,1 = a1 + 2d

        Так, отлично. Одно уравнение составилось.

 

        То же самое проделываем и для шестого члена a6 = 6,3.

        Получим:

        6,3 = a1 + (6-1)·d

        6,3 = a1 + 5d

        Итак, мы получили два уравнения. Эти два уравнения относятся к одной и той же прогрессии. Стало быть, они должны выполняться одновременно. И, следовательно, они должны быть записаны в виде системы уравнений.

        Вот так:

        

        Всё. Мы перевели задание по арифметической прогрессии в чистую алгебру. И дальше можно уже временно вообще забыть про прогрессию и просто решить эту систему уравнений.

        Системка не самая трудная. Решаем самым простым способом – подстановкой. Из первого уравнения выражаем a1 и подставляем во второе:

        

        Приводим подобные во втором уравнении и получаем:

        

        Из второго уравнения легко находится d:

        d = 1,4

        Подставляем d = 1,4 в первое уравнение и получаем первый член:

        a1 = 2,1-2·1,4

        a1 = 2,1-2,8

        a1 = -0,7

        Вот и отлично. Знаем первый член a1, знаем разность d. И теперь мы без проблем можем найти любой интересующий нас член прогрессии. В том числе и четвёртый, да.)

        Пишем формулу n-го члена для n = 4:

        a4 = a1 + (4-1)·d = a1 + 3d

        Подставляем найденные числа и считаем:

        a4 = a1 + 3d = -0,7+3·1,4 = -0,7+4,2 = 3,5

        Вот и всё. Как и следовало ожидать, ответ получился тем же самым.)

 

        Ну как, хлопотно? Да, я согласен. Но зато аналитическому способу (алгебре) любые задачи по плечу! Если её знать, конечно.) А вот картинка годится лишь для маленьких кусочков прогрессии.

        Например, такая задачка:

        Известно, что в арифметической прогрессии a81 = 26 и a271 = 83. Найдите a11.

        Что, неохота картинку рисовать да безошибочно пальчиком считать промежутки? И правильно! Не надо.) Зато второму способу, алгебре, совершенно безразлично, какие числа стоят в задании! Большие числа или маленькие… Алгебра – это тяжёлая артиллерия. С любыми числами справляется.)

        Снова, как и в предыдущей задаче, расписываем каждый член прогрессии по формуле n-го члена:

        26 = a1 + 80d

        83 = a1 + 270d

        Объединяем эти уравнения в систему:

        

        А дальше решаем точно так же, как и в предыдущей задаче. Один в один. Дорешайте, чего уж там!

        Должно получиться:

        a11 = 5

 

        Рассмотрим ещё более хитрую задачку. С подвохом. Если невнимательно читать задание…

        Сумма первого и седьмого членов возрастающей арифметической прогрессии равна 14, а произведение третьего и шестого членов равно 10. Найдите двадцатый член прогрессии.

        Что, внушает? Решение по картинке и "на пальцах" не катит, да… Попробуем перевести всё задание в чистую алгебру? А та – всё сможет.)

        Ничего не боимся и используем главное правило всей математики: "Не знаешь, что нужно, делай что можно."

        Вот и прикидываем, что в этой эпичной задачке можно сделать. Можно хотя бы расписать все данные нам члены (1-й, 7-й, 3-й, 6-й) в виде формул n-го члена, подставляя те числа, которые даны в условии.

        Вот и расписываем каждый член! Прямо по формуле!

        Ну, с первым членом всё и так ясно. Его вообще расписывать не надо.) Идём дальше.

        Для седьмого члена мы можем записать:

        a7 = a1 + (7-1)·d = a1 + 6d

        Третий член:

        a3 = a1 + (3-1)·d = a1 + 2d

        Шестой член:

        a6 = a1 + (6-1)·d = a1 + 5d

        А дальше снова читаем задачку и скачиваем всю остальную полезную информацию. А именно – связь между членами.

        Сумма первого и седьмого членов равна 14:

        a1 + a1 + 6d = 14

        2a1 + 6d = 14

        Так, одно уравнение готово. Читаем дальше.)

        Произведение третьего и шестого членов равно 10:

        (a1 + 2d)(a1 + 5d) = 10

        Получили два уравнения. Раз они относятся к одной и той же прогрессии, то должны выполняться одновременно. Объединяем наши полученные уравнения в систему:

        

        Вот и всё. Всю ценную информацию по прогрессии мы скачали и записали в виде системы уравнений. А дальше дело за алгеброй. Решение систем –  уже её работа. И наша с вами, к сожалению, тоже, да…

        Начнём с первого уравнения. Оно попроще будет. Выражаем из него a1. Для этого переносим 6d вправо и делим всё на двойку. Обычные тождественные преобразования, да.)

        2a1 = 14 – 6d

        a1 = 7 – 3d

        Теперь, ясное дело, подставляем это выражение во второе уравнение:

        (7 – 3d + 2d)(7 – 3d + 5d) = 10

        Приводим подобные в скобках:

        (7 – d)(7 + 2d) = 10

        Раскрываем скобки, приводим подобные и собираем всё слева:

        49 + 14d – 7d – 2d2 – 10 = 0

        -2d2 + 7d + 39 = 0

        Решаем это квадратное уравнение (помножив обе части на минус 1) и получаем корни:

        d1 = -3

        d2 = 6,5

        А вот и обещанный подводный камень! Что дальше? Получилось два значения разности d! Какое из них выбрать? Тупик?

        Вовсе нет! Просто ещё раз внимательно читаем условие задачи в поисках дополнительной информации! Там зачем-то употребляется слово "возрастающей". А составители задач излишним словоблудием обычно не занимаются, да.) Вспоминаем из первого урока, что у возрастающей арифметической прогрессии разность всегда положительна.

        Стало быть, из двух вариантов выбираем d = 6,5.

        Так, отлично. Разность прогрессии найдена. По первому уравнению системы считаем первый член:

        a1 = 7 – 3d = 7 - 3·6,5 = -3,5

        Вот, практически, и всё. Что там от нас в задаче требуют? Двадцатый член? Да, пожалуйста!

        a20 = a1 + (20 – 1)·d = -3,5 + 19·6,5 = 120

        Ответ: 120

 

        А теперь мы рассмотрим с вами ещё несколько коротких и простых задачек. Они, по своей сути, и вправду очень простые, но многих учеников ставят в тупик своей непривычностью и нестандартной подачей условия. Вот и пугается народ. И спотыкается на ровном месте, теряя драгоценные баллы на экзамене…

 

        Работаем с видоизменённой формулой!

        Первым делом, давайте с вами вспомним, как мы обычно задаём любую арифметическую прогрессию? Варианта два:

        1) Отдельными параметрами прогрессии (скажем, a1 и d или a1 и an и т.п.);

        2) В виде последовательности чисел.

        Например:

        (an): 1, 5, 9, 13, 17, …

        К этим двум вариантам задания прогрессии мы уже попривыкли.) Но оказывается, есть ещё и третий вариант задания арифметической прогрессии! А именно - в виде формулы n-го члена. Да-да! Любую арифметическую прогрессию в общем виде можно задать формулой её n-го члена. Для каждой прогрессии – своей.)

        Смотрите сами.

        Пусть, например, в арифметической прогрессии a1 = 3 и d = 5. Запишем для неё формулу n-го члена:

        an = 3 + 5·(n-1)

        Раскрываем скобки и упрощаем:

        an = -2 + 5n

        Это выражение – тоже формула n-го члена! Только не общая, а уже для конкретной прогрессии. Задачки с такой видоизменённой формулой очень часто попадаются на экзамене. И частенько народ, не подумав, тут же радостно ответ пишет и… приехали.) Чем же эта формула так коварна? Здесь есть подводный камень: некоторые, глядя на формулу, сразу думают, что первый член – минус два. Хотя реально первый член – тройка…

        Например, такая задачка на основе реального варианта ОГЭ:

        Арифметическая прогрессия задана условием an = 5 – 1,5n. Найдите сумму первого и девятого её членов.

        Здесь прогрессия задана не совсем привычно. Формула какая-то… Ничего страшного. Бывает.) Эта формула – тоже формула n-го члена арифметической прогрессии. Она тоже позволяет найти любой член прогрессии по его номеру!

        Вот и ищем наши члены. Начинаем с первого члена. Тот, кто думает, что первый член – пятёрка, фатально ошибается! Потому что формула в задаче – видоизменённая. И первый член прогрессии в ней спрятан. Не беда, сейчас мы его отыщем.)

        Просто берём и подставляем n=1 в формулу:

        a1 = 5 – 1,5·1 = 3,5

        Вот так! Первый член – три с половиной! А вовсе не пятёрка…

        Подставляем теперь n=9 и считаем девятый член:

        a9 = 5 – 1,5·9 = -8,5

        Ну и считаем требуемую сумму:

        a1 + a9 = 3,5 + (-8,5) = -5

        Ответ: -5

        Вот и все дела. Теперь, надеюсь, видоизменённая формула n-го члена арифметической прогрессии не поставит вас навечно в тупик.)

 

        Работаем с рекуррентной формулой!

        Рассмотрим теперь ещё один сюрприз. Частенько в задачах на арифметическую прогрессию встречается ещё одно обозначение – an+1. Это, как вы уже, наверное, догадались, "эн плюс первый" член прогрессии. Всё очень просто. Это член прогрессии, номер которого больше номера n на единичку. И всё.) Например, если в какой-нибудь задаче мы берём за an третий член, то an+1 будет четвёртым членом. И тому подобное.

        Чаще всего обозначение an+1 встречается в так называемых рекуррентных формулах. Не пугаемся этого страшного слова!) Рекуррентная формула - это всего лишь способ задания любого члена арифметической прогрессии через предыдущий член. И всё.) Это ещё один, четвёртый способ задания арифметической прогрессии. Поработаем и с ним.

        Допустим, арифметическая прогрессия нам задана рекуррентной формулой:

        an+1 = an+4

        a1 = 3

        Можно посчитать второй член этой прогрессии? Легко! Если за an принять первый член прогрессии a1, то второй член будет, как раз, a1+1 = a2. Первый член нам уже дан отдельно. Это тройка. Вот и считаем по формуле:

        a2 = a1 + 4 = 3+4 = 7

        Третий член можно посчитать через второй:

        a3 = a2 + 4 = 7+4 = 11

        Четвёртый можно посчитать через третий, пятый – через четвёртый, и так далее. Продолжая эту цепочку, можно таким способом добраться до любого интересующего нас члена. А как можно посчитать сразу, скажем, 25-й член a25? К сожалению, никак… Пока предыдущий, 24-й член, не узнаем, 25-й не посчитаем. В этом и состоит принципиальное отличие рекуррентной формулы от формулы n-го члена. Рекуррентная формула работает по принципу домино, только через предыдущий член, в то время как формула n-го члена – через первый и позволяет сразу находить любой член прогрессии по его номеру. Не просчитывая всю последовательность по порядочку.)

        Кстати, а как вы думаете, почему в рекуррентной формуле

        an+1 = an+4

        a1 = 3

        первый член a1 нам задан отдельно? Ответ прост: для последовательного подсчёта членов рекуррентным способом, нам всегда необходима некая точка отсчёта. А именно – некоторый стартовый член, с которого следует начинать. Это, кстати, не обязательно может быть именно первый член. Можно начать счёт со второго члена, с третьего – с любого! С того члена, который дополнительно указан в условии в качестве стартового.

        Подведём итог. Как вы видите, если число последовательно просчитываемых членов не очень большое (скажем, три или пять), то рекуррентные формулы вовсе не так уж и плохи на практике. А вот если считать предстоит много, то уже начинаются неудобства, да…

        К счастью, в арифметической прогрессии рекуррентную формулу очень легко превратить в обычную. Как? Просто посчитать пару последовательных членов, вычислить разность d, найти первый член (если надо), записать формулу n-го члена в привычном виде, да и работать с ней.

        В ОГЭ подобные задания частенько встречаются. Например, такая задачка:

        Арифметическая прогрессия задана условиями:

        an+1 = an+2,8

        a2 = 3

        Найдите 112-й член этой прогрессии.

        Здесь прогрессия задана рекуррентным способом. Ну и ничего страшного. Любой член прогрессии можно посчитать через предыдущий. Второй член нам уже известен. Это тройка. Через него можно посчитать третий член, через третий – четвёртый и так далее вплоть до нужного нам 112-го члена. Мрачноватая перспектива, вообще-то.) А времени на экзамене немного, да…

        Но! У нас же есть такой мощный инструмент, как формула n-го члена! Которая сразу выдаст нам любой член с любым номером! Вот и запустим её в дело. Для начала просто запишем в тетрадке:

        an = a1 + (n-1)·d

        А теперь смотрим на формулу и соображаем, какие данные у нас уже есть, а что нужно дополнительно посчитать.

        Пока у нас есть только номер члена n = 112. А вот первого члена a1 и разности d – пока не хватает. Не беда, сейчас отыщем!

        Читаем ещё раз задачку и видим, что:

        an+1 = an+2,8    и    a2 = 3

        Можно посчитать третий член по известному второму? Можно!

        Считаем:

        a3 = a2+2,8 = 3+2,8 = 5,8

        Ну вот. Теперь нам стали известны два последовательных члена прогрессии – второй и третий. Считаем разность прогрессии:

        d = a3 – a2 = 5,8 – 3 = 2,8

        Внимание! Ещё раз напоминаю, что разность прогрессии d – это не просто разница между двумя соседними членами! Это именно разность между членом и предыдущим членом! Стало быть, для определения разности, надо всегда от члена с большим номером отнять член с меньшим номером.

        Кстати сказать, а можно ли было сразу найти разность прогрессии, не вычисляя третий член? Можно! Давайте ещё разок посмотрим на нашу рекуррентную формулу:

        an+1 = an+2,8

        Переводим формулу на человеческий язык: каждый член (an+1) больше предыдущего члена (an) на 2,8. Прямо по смыслу и определению арифметической прогрессии, величина 2,8 и есть разность d! Вот и всё.)

        Так, разность прогрессии найдена. Осталось отыскать первый член. Не вопрос! Второй член нам уже дан по условию, а разность мы нашли только что. Вот и отнимаем разность прогрессии от второго члена:

        a1 = a2 – d = 3 – 2,8 = 0,2

        Вот и финишная прямая. Подставляем все чиселки в формулу n-го члена и считаем 112-й член:

        a112 = a1 + (112-1)·d = 0,2 + 111·2,8 = 311

        Ответ: 311

 

        Ну как, прониклись? Мощная штука формула n-го члена, правда? Тогда решаем самостоятельно.

        Для разминки:

        1. Записаны первые три члена арифметической прогрессии:

        20; 17; 14; …

        Какое число стоит в этой арифметической прогрессии на 91-м месте?

 

        2. В третьем ряду киноконцертного зала 34 места, а в пятнадцатом – 58 мест. Сколько мест в одиннадцатом ряду, если считать число мест в каждом ряду арифметической прогрессией?

 

        Эта чуть покруче будет:

        3. Дана арифметическая прогрессия:

        32; 31,6; 31,2; …

        Найдите номер первого отрицательного члена этой прогрессии.

        Картинку рисовать муторно, да. Слишком уж медленно наша прогрессия к отрицательным числам приближается… Но вы же формулу n-го члена знаете! Вперёд! Ну, и элемент творчества небольшой надо проявить, да.)

 

        А вот это уже не разминка:

        3. Известно, что в арифметической прогрессии a6 = 6 и a251 = -190. Найдите a101.

 

        4. Третий член арифметической прогрессии в три раза меньше шестого, а сумма второго и пятого членов равна 16. Найдите пятнадцатый член этой прогрессии.

 

        5. Сумма восьмого и четырнадцатого членов убывающей арифметической прогрессии равна нулю, а произведение третьего и двенадцатого членов равно -32. Найдите девятнадцатый член прогрессии.

 

        Задачки попроще, для отдыха:

        6. Арифметическая прогрессия задана условием: an = -0,6+8,6n. Найдите произведение первого и шестнадцатого её членов.

 

        7. Арифметическая прогрессия задана условиями:

        an+1 = an – 0,3

        a1 = 10

        Найдите 51-й член прогрессии.

 

        Ответы (в беспорядке): 54; -5; 82; -70; -250; 1096; -16; 50;

 

        Ну вот и второй этап знакомства с арифметической прогрессией успешно пройден! Осталось ещё научиться быстро складывать её члены. Такие задачки тоже часто встречаются! Об этом – в следующем уроке.

Статья 1
22.12.2016

Привлекайте внимание посетителей к Вашему магазину, публикуя новости о Вашей компании и товарах!

Читать
Статья 2
26.05.2016

Привлекайте внимание посетителей к Вашему магазину, публикуя новости о Вашей компании и товарах!

Читать
Статья 3
24.05.2016

Привлекайте внимание посетителей к Вашему магазину, публикуя новости о Вашей компании и товарах!

Читать