ЗАДАТЬ ВОПРОС

Что такое неравенство? Как решать неравенства?

        Для начала неплохо бы разобраться, что же такое неравенство вообще, как оно устроено и что с ним можно (и нужно) делать. Разбираемся?

        Итак…

 

Что такое неравенство?

        Говоря простым языком, берём любое уравнение и значок "=" (равно) заменяем на другой значок (>, <, , , ). Вот и получается – неравенство.

        Уравнения бывают всякими – линейными, квадратными, дробными, показательными, логарифмическими, тригонометрическими, иррациональными и т.д.

        Соответственно, и неравенства также бывают линейные, квадратные и… в общем, всякие.)

        Теперь поговорим о значках неравенств. Что о них нужно знать? Неравенства со значками ">" (больше) или "<" (меньше) называются строгими. Неравенства со значками "" (больше или равно) или "" (меньше или равно) называются нестрогими. Значок "" (не равно) стоит особняком, но неравенства с таким значком приходится решать постоянно. И мы обязательно порешаем.)

        Сам значок обычно не оказывает существенного влияния на ход решения. Зато в самом конце решения, при оформлении окончательного ответа, смысл значка проявляется в полную силу! В чём мы с вами и убедимся на конкретных примерах.

        Что ещё нужно знать о неравенствах? Неравенства, как и равенства, бывают верные и неверные. Здесь всё предельно ясно. Например, 2>1 – верное неравенство. А вот неравенство 2<1 – неверное.

        Неравенства – ближайшие родственники уравнений. Стало быть, проблемы при решении уравнений будут автоматически приводить к полному провалу и в неравенствах. Срочно повторите решение основных типов уравнений, у кого проблемы! Я серьёзно.) Иначе в неравенствах будете тормозить нещадно… И не надейтесь, что при изложении, скажем, материала по решению квадратных неравенств я буду отдельно разжёвывать, что такое дискриминант или как рисовать график параболы.) Прошу быть к этому готовыми! Так что по ссылочкам-то гуляйте, гуляйте.)

 

Зачем нужны неравенства?

        Вопрос резонный. Затем же, зачем нам нужны и уравнения. Для жизни.)

        В обычной жизни неравенства вы видите повсюду. Причём не только видите, но и… решаете их! Сами того не замечая. Сомневаетесь?) Пожалуйста! Вот вам зашифрованные житейские примеры неравенств. Хранение при такой-то температуре (скажем, от 0°С до +25°С) – неравенство. Штраф за превышение скорости – неравенство. Распределение призовых мест в соревновании – тоже неравенство. Срок действия проездного на метро – неравенство. Опоздание на урок (поезд, самолёт) – и тут неравенство!

        Одним словом, с неравенствами мы с вами сталкиваемся всякий раз, как только нам нужно оценивать или сравнивать какие-то величины. Совершенно любые. Это может быть температура в помещении, скорость автомобиля, время в пути, расходы в магазине, баланс денег на телефоне, рост, вес – да всё что угодно. Всё что мы можем выразить числом, как-то количественно оценить или с чем-то сравнить, приводит нас к понятию неравенства. Верного или неверного.)

 

Как решать неравенства?

        Решение любого неравенства состоит из двух ключевых пунктов.

 

        Это:

        1. Тождественные преобразования неравенств.

        2. Работа с числовой прямой.

 

        Оба эти пункта – основы. Каждый из них одинаково важен. Если есть проблемы хотя бы в одном из них, то попытка решения любого, даже самого простенького неравенства, обречена на провал. Оно нам надо? Согласен, не надо.

       Про первый пункт (тождественные преобразования) подробненько поговорим в этом уроке. Тут всё просто. Второй пункт (работа с числовой осью) поинтереснее будет. Его рассмотрим в следующем уроке.

 

        Итак, вникаем.

        Разные типы неравенств (линейные, квадратные, дробные, показательные, тригонометрические, иррациональные и т.д.) решаются по-разному. На каждый тип - свой собственный способ, свой специальный приём. Но! Все эти специальные приёмы применимы только к некоторому, так называемому стандартному виду неравенства. Т.е. неравенство любого типа первым делом нужно подготовить к применению своего способа.

        Такая подготовка работает для неравенств любого вида. Работает безотказно. И проста до безобразия.) Нужно, всего-навсего, правильно выполнять два (всего два!) элементарных базовых преобразования. Эти преобразования знакомы каждому. Но, что характерно, ляпы в этих самых преобразованиях - и есть основная проблема в решении неравенств, да... Стало быть, надо освоить эти преобразования. Называются они вот как:

 

Тождественные преобразования неравенств.

        Тождественные преобразования неравенств очень похожи на тождественные преобразования уравнений. Собственно, именно в этом и таится основная засада в решении неравенств! Отличия проскакивают мимо головы и… приплыли.) Поэтому я особо выделю эти отличия.

        Итак:

        1. Первое тождественное преобразование неравенств:

        К обеим частям неравенства можно прибавить (или отнять) любое (но одинаковое!) число или выражение (в том числе и с переменной). Знак неравенства от этого не изменится.

        На практике это преобразование выглядит как знакомый всем старый добрый перенос членов из одной части неравенства в другую со сменой знака. Со сменой знака члена, а не неравенства! Знак самого неравенства сохраняется.

        Например, надо решить такое линейное неравенство:

        5x – 3 < 4х + 2

        Тут и думать нечего, вспоминаем нашу мантру - "с иксами влево, без иксов – вправо…"

И действуем:

        5х – 4х < 2 + 3

        Знак неравенства при переносе не трогаем!

        Осталось слева привести подобные, а справа посчитать. Получим:

        x < 5

        Это правильный ответ.

        Если вы – новичок и пока не знаете, как решать линейные неравенства, не беда. В отдельном уроке порешаем. Я сейчас не об этом. А о том, что первое тождественное преобразование неравенств полностью совпадает с аналогичным преобразованием для уравнений! Один в один. А вот второе тождественное преобразование в неравенствах резко отличается от такового в уравнениях. К нему и переходим.

 

        2. Второе тождественное преобразование неравенств:

        2.1. Обе части неравенства можно умножить (разделить) на одно и то же положительное число. На любое положительное число. Знак неравенства при этом сохраняется.

        2.2. Обе части неравенства можно умножить (разделить) на одно и то же отрицательное число. На любое отрицательное число. Знак неравенства при этом меняется на противоположный.

        Вы ведь помните, что уравнение мы имеем право умножать или делить на что попало. И на число, и на выражение с иксом. Лишь бы не на ноль. Ему, уравнению, от этого хоть бы хны. Не меняется оно. А вот неравенства более чувствительны к умножению/делению.

        Вот вам наглядный пример на долгую память. Возьмём неравенство, не вызывающее сомнений:

        3>2

        Умножим обе части на положительное число +2, получим:

        6>4

        Возражения есть? Нету. А теперь умножим обе части на отрицательное число -2, получим:

        -6>-4

        А вот это уже откровенная ахинея! Бред! Ибо минус шесть никак не больше минус четырёх. Но… стоит только изменить знак неравенства на противоположный, как всё сразу становится на свои места:

        -6<-4

        Про бред и ахинею я не просто так ругаюсь. "Забыл(а) сменить знак неравенства…" – это самая распространённая ошибка в решении неравенств. Именно на этом несложном преобразовании столько учеников сыпется! Которые забывают… Вот и ругаюсь. Авось, запомнится…)

        Самые внимательные, возможно, уже заметили, что неравенство нельзя умножать на выражение с иксом. Что ж, респект, как говорится.) А почему нельзя, как вы думаете? Очень просто. Мы же ничего не знаем про знак этого самого выражения с иксом! Оно может быть положительным, может быть отрицательным. Следовательно, мы понятия не имеем, какой знак неравенства ставить после умножения. Менять его или нет? Непонятно… Конечно, это ограничение (запрет на умножение/деление неравенства на выражение с иксом) можно и обойти. Если очень уж припрёт.) Но это – отдельная тема.

        Зачем нужно второе преобразование? Да всё за тем же, зачем оно нужно и в уравнениях! Избавляться от коэффициентов. На которые, напоминаю, перенос влево-вправо не распространяется. Например, что-нибудь крутое типа:

        9-3х > 0

        С девяткой-то всё ясно. Переносим вправо по первому преобразованию, получаем:

        -3х > -9

        Знак неравенства сохраняется!

        А вот теперь соображаем, что в ответе нас всегда интересует чистый икс. А тройка с минусом – мешает. Вот тут-то нам и нужно второе преобразование! Делим, как в уравнениях, обе части на -3. Внимание! Делим на отрицательное число!

        Знак неравенства меняется на противоположный!

        Получаем:

        x < 3

        Это ответ.)

        Ещё раз. В этом уроке мы с вами пока что не решаем неравенства. Мы всего лишь тренируемся правильно применять базовые преобразования! Просто на конкретных примерах гораздо нагляднее демонстрировать сам процесс.) Стало быть, если запись окончательного ответа x<3 пока что кажется вам полной китайщиной, не страшно. Совсем скоро мы с вами начнём тренироваться на кошках конкретных типах неравенств (с иксами, да…) – и все эти буковки и значки обретут смысл.

        Итак, с первым пунктом – тождественными преобразованиями – разобрались (надеюсь…). Но для успешного решения неравенств одних только тождественных преобразований, чаще всего, недостаточно. Именно этим неравенства и отличаются от уравнений. Поэтому пора переходить ко второму пункту. К работе с числовой осью.

        Об этом – в следующей теме.

Статья 1
22.12.2016

Привлекайте внимание посетителей к Вашему магазину, публикуя новости о Вашей компании и товарах!

Читать
Статья 2
26.05.2016

Привлекайте внимание посетителей к Вашему магазину, публикуя новости о Вашей компании и товарах!

Читать
Статья 3
24.05.2016

Привлекайте внимание посетителей к Вашему магазину, публикуя новости о Вашей компании и товарах!

Читать